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J. Phys. A :  Gen. Phys.. Vol. 5. June 1972. Printed in Great Britain 

Relativistic theory of magnetoelastic interactions I 

G A MAUGINt 
Continuum Mechanics Program, Princeton University Engng Quad., Princeton, NJ, USA 

MS received 25 August 1971, in revised form 31 December 1971 

Abstract. In the first part of the present work, the relativistically invariant field equations 
relevant to mechanics, thermodynamics and electromagnetism are presented in a 
phenomenological continuum theory of magnetoelastic interactions in which the magnetic 
spin is accounted for. 

1. Introduction 

In  a recent series of papers, Maugin and Eringen (1972a, 1972b, 1972c, also Maugin 
1971a) have formulated a continuum theory of magnetoelastic interactions in which 
the spin of magnetic origin is accounted for. This kind of approach is often said to 
resort to micromagnetism or micromagnetic theory. The theory was intended to be 
applied to ferromagnetic materials and includes, in a phenomenological way, effects 
that can be expected in these materials, such as the existence of an anisotropy field 
and of the exchange energy, the latter due to the interactions developed between 
neighbouring spins. However, the theory developed was still incomplete. In Maugin 
and Eringen (1972a, 1972b) the treatment was three dimensional with the electric part 
of the electromagnetic field completely ignored. Moreover we neglected the currents 
and, though we took into consideration dynamical terms as far as mechanics was 
concerned, the magnetic part was treated in quasistatics. Dissipation processes and 
loss mechanisms have been discarded for most part of the works quoted above since 
we used a variational formulation to start with. The theory so given presented the 
same incompleteness as that of Brown (1966) and Tiersten (1965). A special kind of 
dissipation derivable from a Rayleigh potential has been considered in Maugin and 
Eringen (1972a). It is similar to that introduced earlier by Gilbert and Kelley (1955) 
and was shown to be equivalent to that of Landau and Lifshitz (1935). It has also been 
considered by Kaliski (1969) who closely follows the general expos6 given by Akhiezer 
et a1 (1967). A larger class of dissipative processes has been dealt with by Maugin and 
Eringen (1972a, 5 8), Tiersten (1964) and Kaliski (1969). Maugin and Eringen make 
use of the thermodynamical admissibility (Clausius-Duhem inequality). In contrast 
to the variational formulation referred to above, the field equations were there postulated 
in global form (ie for the whole body under study) along with the second principle of 
thermodynamics. 

t Formerly, Research Associate, Princeton University, USA. presently ui th  the CEDOCAR (Centre de 
Documentation de I’Armement), Ministry of National Defense. Paris. France Private address I38 Rue 
de la Madeleine, 49-Angers. France 
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It was further shown by Maugin and Eringen (1972~) that a fully dynamical theory 
could be formulated without too much sophistication with the universe of Minkowski 
as background, The latter work was in fact an extension of the works of Grot and 
Eringen (1966) and Grot (1970) in special relativity and of Maugin (1971f) in general 
relativity, with a view to including the magnetic spin and the magnetization gradients 
in the framework of the theory. A variational principle was still used and, consequently, 
no dissipative processes were considered. The current was solely due to convection; 
the Joule term J .  E thus vanished in a rest frame. We must note here that the theory 
thus constructed provided a generalization of the earlier results of Frenkel (1926), 
Mathison (1937) and Weyssenhoff and Raabe (1947) (concerning the theory of the 
spinning electron) to deformable media by introducing a general stress tensor and the 
magnetization gradients. It also constitutes the counterpart, for nonlinear magnetized 
elastic solids, of the theory of spinning fluids developed by Halbwachs (1960) in his 
monograph. It should be pointed out that the works of Frenkel, Mathison, Weyssenhoff, 
Raabe and Halbwachs are concerned with the quantum theory of Dirac’s electron. 
They have been used for the last two decades by physicists who favour a causal re- 
interpretation of quantum mechanics and consider nonlinear field equations based on 
the hydrodynamical interpretation of the wavefunction (see particularly, Halbwachs 1960 
and references quoted therein). It is therefore no wonder that the equations developed 
in relativistic continuum mechanics present great similarities with those of this quantum 
theory. Note that, in contrast to the recent article of Ellis (1971), the present work arid 
the preceding ones of Maugin and Eringen deal with a continuum description; the 
infinitesimal element of matter playing here the role of the point particle considered 
by Ellis. The number of degrees of freedom is thus largely increased, in fact it is infinite 
for a continuous medium. We therefore take account of strains, finite for the sake of 
generality, and consequently of stresses. A linear theory may, of course, be deduced 
for suitable approximations. 

After this short critical review, we can state that a fully dynamical theory of magneto- 
elastic interactions including the effects of spin, magnetization and polarization 
gradients, currents and an arbitrary form of dissipation should possibly he obtained 
in the frame of special relativity by postulating global balance laws subject to  thermo- 
dynamical restrictions. This is tentatively done in the subsequent sections. Yet, to 
simplify the exposit, we shall disregard the orientation of the material due to purely 
structural causes. That is, the theory given is not constructed for polar media (for 
relativistic polar continua, see Kafadar and Eringen (1971) and Maugin and Eringen 
1972d). The orientation of the element of matter (assimilated to a small magnet) results 
here only from the magnetic spin. That the two effects, magnetic orientation and 
structural orientation, are comparable is well known from the theory of liquid crystals. 
The structure of the field equations for the two cases has been looked at by Maugin 
and Eringen (1972a). How these two effects can be brought together has been examined 
by Maugin (1971e). We shall therefore not come back to this point. 

A last point must be emphasized before we turn to the detailed analysis. That we 
must consider a large class of dissipative processes in this phenomenological theory 
results from the very existence of complicated loss mechanisms in the theory of ferro- 
magnetic materials. For instance, from a number of applications in ferromagnetic 
resonance, it is known that the magnetization vector spirals into parallelism with the 
applied magnetic field. This fact is given a good representation by introducing a damping 
term in the spin equation. Furthermore there exist numerous experimental investiga- 
tions of the dissipation of energy in domain wall propagation (whose study resorts to 
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micromagnetism) and in coherent rotation phenomena. The nature of these dissipations 
is still unclear. This is certainly a sufficient reason to study linear and nonlinear dissipa- 
tion processes from a phenomenological point of view. 

The present expose is in the realm of classical continuum physics. Of course, it 
remains to treat a number of practical problems and to compare the results with 
experimental data in order to assert the physical validity of this phenomenological 
theory. There exist other possible approaches to the problem of micromagnetism, 
either of the micromorphic type (cf Eringen and Kafadar 1970 and Eringen 1971b) or 
of the geometrical type (cf Maugin 1971d). They should be promising but, still in infancy, 
they need to be unequivocally linked to the physics of magnetic phenomena. 

Notations and basic kinematical and geometrical notions are recalled in $ 2 .  In $ 3. 
we state the global form of balance laws for hypersurfaces embedded in the minkowskian 
space-time manifold in a somewhat axiomatic manner. This is done for mechanics. 
electromagnetism and thermodynamics. When a proper physical significance is given 
to each of the terms which appear in these equations, we deduce the local form of the 
field equations. In $4, the field equations although written in four dimensional 
formalism, are given in a form very similar to that of three dimensional physics. In 
$ 5, we examine the constraints imposed upon the field equations when the magnetization 
is saturated. We thus obtain special possible forms of the equation governing the 
magnetic spin. The system of equations given in this part of the work is under- 
determined. Constitutive equations for a particular material required to close this 
system will be developed in part I1 after a thorough study of local forms of the second 
principle of thermodynamics (Clausius-Duhem inequality) appropriate to the con- 
sideration of dissipative processes. 

2. Preliminaries 

The notation used hereafter is closely related to that of Grot and Eringen (1966), 
Maugin and Eringen (1972c, 1972d) and Maugin (1971b, 1971c, 1971d, 1971f). We use 
the standard tensor notation and summation convention of diagonally repeated indices. 
Greek indices (small or capital) assume the values 1, 2, 3 and 4 while all Latin indices 
take the values 1, 2, 3. Parentheses around a set of indices denote symmetrization and 
brackets denote alternation. capyd is the permutation symbol whose algebra is based 
on the formulae 

where 6; is the Kronecker symbol. Only a very brief account of kinematics is given 
here. The reader is referred to the authors quoted above for a more extensive presenta- 
tion. 

In the Minkowski four dimensional space-time manifold M4, the squared arc 
length element is written in a so called inertial frame of reference as 

(ds)2 = (dx)’ + (dy)’ +(dZ)’ - CZ(dt)2 = dz, dz“ 

(zl, z 2 ,  z3 ,  z“) = (x, y ,  z ,  ict) i = 

where x. y ,  z are rectangular coordinates in euclidean space E 3 ,  t is the newtonian 
absolute time and c is the velocity of light in vacuum. In a curvilinear frame of 
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coordinates x' (x4 timelike), the metric gap is symmetric and normal hyperbolic, that is, 
of signature (+, +, +, -)  and equation (2.1) reads 

where gsY is the reciprocal of gas. 

entirely described by the mapping of class C2 
The direct motion of a material particle labelled (X") along its world line (%7xK) is 

x" = %'"(XA) xA = (X",icz) (2.3) 
where X" are lagrangian coordinates in euclidean reference space E: and z is the 
proper time of ( X K ) .  The operator 8/87 (also denoted by a superscript dot) is the 
differentiation with respect to r ;  hence it defines rates. The four velocity U" and the 
four acceleration U" are defined by 

with 
uaua = -c2 u,v,ua = 0 

with 
U"U, = 0. 

A comma or a symbol 8 followed by an index indicates partial derivative. A semicolon 
or a symbol V followed by an index denotes covariant partial derivative based on 

XK and z are independent variables such that we can invert equation (2.3) to get 
the ga,. 

X" = XK(X") r = z(x") 
with 

It follows that : 

ax" a x K  
XU," - XK,, = - 

a x K  a x e  

are well defined quantities. The chain rule of differentiation yields 

X K , , X " , ,  = 6: X " , K X K , ,  = 6:-u'T,, (2.8) 
where 6: is the Kronecker symbol in E:. 

operator Pas. Defined at an event point M in M4 as 
Of great importance in the subsequent developments, is the projector or projection 
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it allows the decomposition of any tensor along the four velocity and onto the hyper- 
surface .U: orthogonal to (VxK) at M. Given a four vector fieldf" at M, we have 

f " = fS+fi ,"  (2.10) 

with 

(2.1 1) 

If in equation (2.10), f E 0, then f "  p. We say that f " is a PU four vector field 
(ie perpendicular to U"). f ' "  is in M:.  More generally, a tensor of any order A"".." is 
said to be PU if and only if 

a P (2.12) AaB...Fu = A@ ... P U B  = A38...PU = 0 

then 
A"P...P = y o p f p  . , , pf:AgiJ...\' - = A"/j...Ll 

For a second order symmetric or skewsymmetric tensor A",, we have 
- 

A " B ~ ,  = 0 + AZP is PC' A"b A"b. (2.13) 

We remark that PSp is symmetric, idempotent and PU. That is 

P"B = P," P"]P!? = P?, P",d = 0. 

A general second order tensor Tow is decomposed according to the formula 

(2.14) 

Note that a second order skewsymmetric tensor AaP has a decomposition of the form 

where 

(2.15) 

* * 
(2.16) i 1 

A Z P  = P;"P;AP,, A,, = iCEapyda7ud 

where A ,  and aa are PU. 

1971c) : 
Before defining the strain measures, we recall the following postulates (Maugin 

(i) All tensorial objects used for describing the deformation field of a continuous 
medium in iM4 must be either defined in E;  (ie are lagrangian tensors) or PU 
in M4. 
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From which it follows : 
(ii) All tensorial objects used for describing the deformation field of a continuous 

medium in M4 must reduce to their analogues of classical continuum mechanics 
in a rest frame. 

Postulate (ii) is a straightforward consequence of postulate (i). These postulates 
serve as guidelines for the choice of correct measures of deformation in M4. We now 
recall the definition of the strain measures and of their rates needed in the following. 
The direct and inverse deformation gradients and the relativistic Green tensor CKL 

and its reciprocal C K L  are defined by 
- 1  

- axK 
XK,, = - ax. x;K = x",K (2.17) 

(2.18) 

(2.19) 

In the following, gap and map are the rate of strain tensor and the vorticity tensor 
respectively, with 

(2.20) 

We can thus complete the following diagram of useful strain measures and rates of 
deformation : 

in E;  in M: 

Rates 

where &. indicates the Lie derivative with respect to the four vector field U' (cf Maugin 
1971b). It is straightforward to verify that x:~, X K , a ,  cap, oap and oa8 are PU tensor 
fields, hence 'good' measures (cf postulate (i)). 

The last notations we shall need are those related to hypersurfaces embedded in 
M4 and to integrals over these. We denote by dv,, ds,,, ds2a! and dS2ap the four 
element of volume in M4, the oriented three dimensional surface element of a three 
dimensional hypersurface (Y3) (whose oriented unit normal is n,) and the two dimen- 
sional surface element and its dual, of a two dimensional hypersurface (Y2) (cf Grot 
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and Eringen 1966). We have 

dv, = ,/lgl dx' dx2 dx3 dx4 in the x' system 

= ic dX' dX2 dX3 d t  in the X' system 
(2.21 1 

Gaussian parametrizations are assumed on (Y3) and (Y2)  in order to define surface 
elements. Finally, let (393) be a three dimensional hypersurface, regulart boundary 
of a region (8) of M4. (r) is a regulart discontinuity three dimensional hypersurface 
in (23). Let @* be a four vector field. With the obvious notation @ [ 8 8 ] ,  we have the 
generalized Green-Gauss theorem (cf Eringen 1971a, p 125) : 

ds3,, = n, ds,. 

@[awl = 1̂  4 3 d ~ 3 z  = 4z:z do, + lrj 141 d S 3 m  (2.22) 1̂  (ea-rj (za-r) 

where the familiar symbolism [ . . . ] denotes the jump across (r). 

3. Balance laws 

3.1. Global balance laws 

We postulate the global balance laws for the theory of magnetoelastic interactions in 
the following manner. To every three dimensional hypersurface (Y3) in M A ,  we assign 
a positive scalar invariant R ,  a four vector P", a skewsymmetric tensor a scalar 
invariant H and a scalar function J .  They are called the total mass flux, the total rate 
of energy-momentum, the total rate of moment of energy-momentum, the total rate of 
entropy and the total flux of charge respectively. To every two dimensional subspace 
(9') in M4, we assign two scalar invariants F and r. All these tensorial quantities 
are postulated to transform as Lorentz fields. They are written in explicit form as 

with 

Fas = - F u9'1 = t LY2) F@ dsY 8' 

t Smooth enough to avoid nonunique definitions of the oriented normal at each point. 

(3.1 1 

(3 .2)  

(3.3) 
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The tensor fields p a ,  TUB, Muay, q", J", Fa, and CUB are called the mass flux four vector, 
the stresssenergy-momentum tensor, the total spin tensor or angular momentum 
tensor, the total entropy flux four vector, the current four vector, the magnetic flux 
tensor and the electric displacement-magnetic field intensity tensor respectively. 

Now define 9' the four force per unit volume in M4, CaB the skewsymmetric tensor 
representing the couple per unit volume in M4 and r the source of entropy per unit 
volume in M4. 

Let (W) be a subregion of M4 swept out by a material body ( B )  ((BR) in the reference 
configuration in E:) as time goes on, in the time interval T = [ t l ,  t 2 ]  c iw, and (aa) 
its boundary. We take (9') (898). The global balance laws of mechanics, thermo- 
dynamics and electromagnetism are then stated as follows (cf Grot and Eringen 1966) : 

R[d93] = 0 (3.8) 

(3.9) 

(3.10) 

(3.11) 

J[d93]  = 0 (3.12) 

F[?] = 0 (3.13) 

r[y2] = J [ S P ~ ] .  (3.14) 

Equations (3.8) through (3.14) represent respectively the conservation of mass, the 
balance of energy-momentum, the balance of moment of energy-momentum, the 
second law of thermodynamics, the conservation of electric charge, the conservation 
of magnetic flux and the Ampere-Gauss laws. The two last equations are valid for 
every two dimensional circuit (s2) in (93) and outside (9) and for every two dimensional 
circuit (9') enclosing a three dimensional subspace (9') within ($3) respectively. 

These equations are supposed to be valid for any element of hypersurfaces for 
which they are written down. Thus, after application of Stokes' theorem and of the 
theorem (2.22) when necessary, with C (x") = 0 a three dimensional discontinuity 
hypersurface present in (a ) ,  we obtain the local field equations. 

3.2. Local balance laws 

They are 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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P;, = 0 in (93-C) 

c ~ ~ ~ ~ F ~ ~ ; ~  = 0 in (g -C)  

GmP;, = J" in (a-C) 

[Jqna = 0 on (C) (3.19) 

(3.20) 

(3.21) 

[caPYsFPp]n, = 0 on (C) 

[GaP]nP = 0 on (I;) 

where we have defined the unit normal to C(xa) by 

(3.22) 

For the sake of simplicity, we assumed that neither surface charge nor surface 
current were given on (E). 

3.3. Physical contents of local balance laws 

All tensorial quantities present in equations (3.15) through (3.21) admit unique decom- 
positions according to the expressions (2.10), (2.14) and (2.15). Note that Tab is a general 
second order tensor, MaPY is skewsymmetric in Q and p and Fyd and GuB are skew- 
symmetric. The physical contents of the present theory are given by the physical 
significance granted to the elements of decomposition of these tensors. This is usually 
done by identifying term by term, in a Cartesian frame of reference and at the limit 
c .+ CO, the space-space, mixed and time components of the above mentioned tensors 
with the physical objects which appear in the equations of classical three dimensional 
physics. This was done by Grot and Eringen (1966) and Kafadar and Eringen (1971). 
We shall not repeat these arguments which, in some cases, may be misleading. We 
only consider a priori special decompositions of the tensors in question-these decom- 
positions have the only merit of yielding classical results in the proper 'nonrelativistic' 
limit (see eg 0 11 of Maugin and Eringen 1972~). We shall take 

p3 = pu" (3.23) 

(3.24) 

- 
a - 4" 'I = -  

6 
'I" = ;;;+ pqu" with (3.27) 

- 
j a  = J" 4 = -JJ"u,  yu, = 0. (3.28) J" = ja+-u" 4 

C 2  

Here p is the relativistic invariant density of matter, a proper scalar field, that is, 
measured by an observer following the infinitesimal element of matter of mass p in 
its motion along (gXK). o is the energy density per unit volume, q" is the heat flux four 
vector, pa is the nonmechanical momentum (by opposition with ou") and tB3 is the 
relativistic stress tensor that represents macroscopically the matter-matter short range 
interactions which give rise to elastic forces. Sap is the intrinsic spin per unit of proper 
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mass, M"bY is the relativistic couple stress tensor, q is the proper scalar density of entropy 
and 0 is the proper thermodynamical temperature. jz: is the conduction current while 
qu"/cz is the convection current ( 4 :  volume charge density). The tensor fields q", p", 
toa, Sub and M"bY are obviously PU. o is assumed to be the sum of the rest energy and 
of the so called relativistic internal energy b. The latter, 6, must take account of the 
strain energy and, phenomenologically, of the interactions between matter and electro- 
magnetic fields in (a). For the proposed theory, it reflects the anisotropy and exchange 
energy. We write 

0 = 1,;) € = P E .  (3.29) 

With the general decomposition (3.24), U" is not in general an eigenvector of T @  except 
if pa and/or q" are null. 

According to equations (2.15)-(2.16), the fields Fap and Gap are written (cf Grot and 
Eringen 1966 and Lichnerowicz 1967) 

(3.30) 

(3.31) 

The PU vector fields &", By, gp and are the electric field four vector, the magnetic 
intensity four vector, the electric displacement four vector and the magnetic field 
four vector respectively. The relations existing between these four dimensional electro- 
magnetic fields and the three dimensional usual vector fields of classical electromagnetic 
theory are given in Grot and Eringen (1966). 

We now turn our attention to the source terms F', Cup and r that appear on the 
right hand sides of equations (3.15)-(3.21). They represent the long range interactions 
with exterior fields (eg gravity) and the interactions between matter and electromagnetic 
fields (eg ponderomotive force and couple). We shall take 

oh 

(3.32) 

(3.33) 

(3.34) 

wheref" is the four force per unit mass not caused by the presence of electromagnetic 
fields, h is the heat supply per unit mass. Among the variety of forms proposed by 
different authors, the ponderomotive force fizem, and the ponderomotive couple C;l,s,, 
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are chosen to be 

(3.36) 

The first term of equation (3.35) is the Lorentz force while the second one is the 
Stern-Gerlach force in magnetized media. This arbitrary choice, as emphasized by 
Penfield and Haus (1967), does not bring any damage to the calculated values of 
observable physical forces since the controversy about the form of&,,  concerns small 
relativistic effects. In equations (3.35)-(3.36), we have introduced the magnetization- 
polarization tensor f i u p  per unit mass by 

p f i@ = nao = F @  - G Z f l .  

llzp admits the unique decomposition 

1 1 
rI"P = - ( ~ p l u p - . ~ p u " ) + , € ~ p ' d ~ ~ ~ y u 6  

C 1C 

Note that it is easily shown that f T e m ,  can be written as 

(3.37) 

(3.38) 

(3.39) 

where T$,,, is the electromagnetic energy-momentum tensor. 
We have supposed (cf Q 1) that the theory presented was not given for polar media. 

Therefore, the intrinsic spin that appears in equation (3.26, part one) can only be due 
to magnetization. For an isotropic gyromagnetic effect, it is shown that Sup and nap 
are linked by the relation 

(3.40) 

in which y is the gyromagnetic ratio for an electron (e and mo are respectively the charge 
and the rest mass of the electron). Then equation (3.26, part three) is nothing but the 
so called Frenkel condition (Frenkel 1926) which asserts that, following the hypothesis 
of Uhlenbeck and Gouldsmit, the spin is purely magnetic in the rest frame of an electron. 
On account of equation (3.26, part three), we see that a unique four vector sa referred to 
as the spin four vector can be associated with SaB through the relations 

(3.41) 

That is, sa is PU; the spin is an axial vector which is space-like. This is in conformity 
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with our ideas on quantum mechanical spin. We remark that equations (3.26, part three) 
and (3.40) require that 8" vanishes. The case of dielectric materials is thus eliminated 
or, the present theory applies to very weakly polarizable media. We shall take in the 
sequel 

9" E 0 that is = ga. (3.42) 

It remains to specify the form of the energy c. It is in general a functional of the 
motion (2.3), of Rap (or &"/p) and of 8. Special function approximations of this functional 
yield constitutive equations for different material classes. A special function form 
corresponding to elastic materials will be considered in part 11. In some cases, it may 
prove more convenient to use the energy defined by 

(3.43) 
1-  1 

e = c+-IIavFva = c+-AaBa 
2 P 

in which the term ~ W p V F v P  is the energy of a magnetic doublet per unit mass. 
We are now in a position to write down the local field equations for the theory of 

deformable magnetized materials endowed with a continuous distribution of electronic 
spins. In order to obtain these equations in a form closely related to that of three 
dimensional formalism, every tensorial equation of the set (3.15) through (3.21) is 
written by using the decomposition of all tensor fields whose four vectorial form is used 
as much as possible. By this operation, the splitting of space and time that were 
synthesized in minkowskian formalism is then accomplished. Taking the 'slow motion' 
limit, that is, the so called nonrelativistic limit, is therefore straightforward. 

We shall give only the final results of this operation. In order to help the reader, useful 
intermediate results are given in Appendix 1. 

4. Four vectorial form of the field equations 

4.1. Equation of continuity 

(PU") ; ,  = 0 [puqna = 0. 

4.2. First Cauchy's equations 

Upon carrying (3.24) and (3.29) into (3.16, part one), applying the operator Pya to the 
result and taking account of equations (A.l) through (A.6), we obtain three independent 
equations that correspond to the conservation law of momentum, that is, to the first 
Cauchy's equations of classical continuum mechanics 

- czpyup;p - c2py + p"li,uY - U Y t 4 ( , ; 8  (4.2) 

in which we have gathered within parentheses terms that vanish at the nonrelativistic 
limit. 
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4.3. Second Cauchy's equations 

Carrying the expressions (3.25), (3.26), (3.33) and (3.36) into equation (3.17, part one) 
while taking account of equation (3.16, part one), we have 

Applying the operator P$Pya to this equation, taking account of equations (A.7HA.10) 
and noting that, from equation (3.24) 

we obtain the projection of equation (4.3) onto M :  

The term within parentheses disappears at the nonrelativistic limit. Note that only 
three of equations (4.5) are independent. They correspond to the conservation of moment 
of momentum, that is, to the second Cauchy's equations of classical continuum 
mechanics. Alternatively, equations (4.5) define t["". If there are neither magnetic 
spins nor couple stresses, these equations reduce to those of Grot and Eringen (1966, 
equation (5.19) with P = 0)t. 

It is also of interest to project equation (4.3) along ua. On contracting equation (4.3) 
with U ,  and using (4.4), (2.4), (2.5), (3.24, parts two to four) (3.30) and (3.38), one gets an 
expression for the nonmechanical momentum pB 

where one used the identities 

pu 8 -  = - y P u ,  M = ~ Y , y U ,  E - .M*h4,,' (4.7) 

which follow from the PU character of Sap and Mupi.  Only three of equations (4.6) are 
independent. In absence of heat, we see that p @  is due only to electromagnetic fields and 
to the spin. 

4.4. Energy equation 

This equation results from the projection of equation (3.16, part one) along U'. With pa 
and tflQ PU and using equations (A.llHA.12) and (2.4, part three) and (2.5, part two), we 
obtain the scalar equation 

Further transformations of this equation will be given later on. 
t Within an alternation of the indices of taB. This comes from a different decomposition of 'Po. 
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4.5. Entropy inequality 

Substituting the expressions (3.27) and (3.34) into equation (3.18, part one), we get 

(4.9) 

4.6. Electromagnetic equations 

By projection along ua and onto M :  of equations (3.19) through (3.21), bearing in mind 
equation (3.42), one gets in (93 - X) 

* 4  ja;,+j+-uU";, = 0 
CZ 

(4.10) 

(4.12) 

(4.13) 

(4.14) 

respectively. Only three of equations (4.12) are independent. The same is true of 
equations (4.14). The above equations are the obvious four vectorial of Maxwell's 
equations, more specifically of the charge conservation, the equation of nonexistence of 
magnetic poles, the equations of Faraday, Amptre and Gauss respectively. 

5. Saturated magnetization 

So far no hypotheses have been made as to the magnitude of the magnetization. Of 
importance for the study of ferromagnetic materials, is the case for which the magnetiza- 
tion three vector has a constant magnitude over the specimen of material considered. 
This situation happens in ferromagnetic media brought below the Curie temperature. 
Then some materials present a structure in domains in each of which the magnetization 
vector is constant in magnitude and in direction. An overall look a t  the specimen shows 
that the magnitude of the magnetization is constant throughout the whole specimen but 
its direction varies from one domain to another, thus yielding a total zero (mgre exactly, a 
negligibly small total) spontaneous magnetization in the multidomain crystal or poly- 
crystalline material in this equilibrium state. Clearly this state can exist without any 
applied magnetic field. The application of such a magnetic field perturbs the distribution 
of magnetic moments. A rotation of the magnetization vector is observed within each 
domain while the latter is deformed to yield a new state of equilibrium. During the 
rotation, the magnetic moment has to overcome different actions. First, the magnetiza- 
tion has a preference for a certain orientation with respect to crystalline axes. A certain 
amount of energy referred to as the anisotropy energy is thus used. Second, the motion 
of each magnetic moment is linked to that of its neighbours. This effect gives rise to 



800 G A Maugin 

the notion of exchangeforces. Finally, due to the dissipation of which the nature is not 
clearly known, the rotation of the magnetic moments suffers a damping (cf Brown 1966, 
Maugin and Eringen 1972a). 

A deformable magnetically saturated material may be represented by an ensemble of 
material points to each of which is attached a magnetic moment pk per unit mass, of 
constant magnitude throughout the body ( B )  [(BR) in the reference space E:]. We have 

(5.1) 

This equation may be given a covariant four dimensional form. We remark that. 

nZP 2 [dual(pk), ipk] (5.2) 

where p k  is the polarization three vector in E 3 .  From equations (3.40) and (3.26, part 
three), it follows that: 

(5.3) 

pkpk = pz = constant. 

from the decomposition of the tensor nap, we have in a rest frame 

SZP 2 [Y-l dual(pk), 01. 

Thus, the covariant form of equation (5.1) reads 

4S,,SBa = Si = constant = s,s" = si (5.4) 

in which we have made use of equations (3.41). Taking the proper time rate of equation 
(5.4), we get 

( 5 . 5 )  

Then, contracting equation (4.6) with S,, and taking account of equations (3.26, part 
three) and (4.4), we obtain the following scalar equation which can be considered as a 
constraint during the motion of a deformable magnetically saturated medium : 

S,,SP" = insz = 0. 

S P a ( P + M @ y  = 0 (5.6) 

since 

S P , F [ a ~ ~ 7 ~ P 1  .Y = 0 (5.7) 

from the skewsymmetry of F''. 
From the condition (5.4), a priori forms of the equation (4.3) describing the motion 

of the magnetization can be given. Let Rap be the skewsymmetric tensor representing 
the rotation of sa in M4. Then such a form is 

pP = 2R'~SIYlS'_E.{tRZ"P-'S-2(~~ 2 0  2 p v  SW))S"P) (5.8) 

where >. is a constant coefficient. On contraction of this equation with S,,, we get 
equation (5.5). On contraction with R,,, we get 

PQ,, = 0. (5.9) 

This equation shows that in a real displacement R,, , the magnetic spin does not work. 
The quantity is a D'Alembertian-inertia couple (cf Tiersten 1964) or, in other words, 
the magnetic spin presents features of gyroscopical nature. 

Another possible form of equation is the following: 

(5.10) 
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where M is a constant coefficient. Here also, it can be shown that equations (5.5) and (5.9) 
follow. Equations (5.8) and (5.10) represent the four dimensional relativistic equivalent 
forms of the equations given by Landau and Lifshitz (1935) and Gilbert and Kelley 
(1955) respectively. In both equations, the second term of the right hand side describes the 
approach of the magnetization into parallelism with the efSective magnetic field resulting 
from the applied magnetic field and the different interactions. These terms introduce a 
dissipation and yield a noncoplanar rotation of the magnetization. They are not 
equivalent except in certain approximations (cf Maugin and Eringen, 1972a). We shall 
see in part I1 how equation (4.3) and equation (5.8) or (5.10) can be shown to be equivalent 
on a correct definition of the effective field mentioned above. 

6. Conclusion 

The equations (4.1), (4.2), (4.5), (4.8), (4.10H4.14) constitute the set of field equations 
governing the behaviour of a deformable magnetized and weakly polarizable material 
endowed with electronic spins in (a). The number of independent components amounts 
to : 1 + 3 + 6+  1 + 1 + 8 = 20. They are supplemented with corresponding jump 
relations across the discontinuity hypersurface (E) and boundary conditions on ( 8 9 ) .  
The unknown fields of the problem are U', p, tpa,  go, E (or e), j" ,  Ba, 2" (or A"), &' and 
Mapy of which the number of independent components is respectively 3,1,16,3,1,3,3,3, 
3 and 24 thus totaling 60 unknown scalar quantities. We see that the system is under- 
determined. We need 46 equations more to close the system. This is precisely the total 
number of independent components of constitutive equations for the fields j", P a ,  q p  and 
Masr. Part I1 of this work will be devoted to the study of such constitutive equations for 
a specified class of materials with the help of the constraint provided by the inequality 
(4.9) of which we shall give several forms. 

Appendix 1 

The following expressions may be readily verified : 
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(A. 10) 

(A.11) 

(A.12) 
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